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Abstract

The objective of this research was to develop algorithms that can be embedded in a hierarchic co-
ordination and control architecture for teams of multiple UAVs. This resulted in several algorithms
that use mixed-integer linear programming (MILP) to perform the activity and path planning com-
ponents of the team coordination problem. Research on this project focused on implementing these
approaches using a receding planning horizon to improve the computational tractability and on
increasing the robustness of the techniques to uncertainty in the situational awareness. We have
also completed a multi-UAV testbed that will be used to evaluate various distributed and hierarchic
control architectures.

Main Accomplishments

The following lists the main accomplishments of the project:

"Developed a new receding horizon formulation of the task assignment (RHTA) problem using
the decomposition approach [1, 2]. The RHTA selects multiple tasks for each UAV during
each, iteration of the design, which enables greater coordination between the team and can
result in much better performance than iterative greedy assignment techniques. This faster
task assignment algorithm forms the core of the hierarchic coordination architecture using
"dynamic sub-teams".

" Modified the MILP trajectory design algorithm to: (i) execute as a model predictive con-
troller; (ii) account for external disturbances (e.g., impact of wind on the UAVs); and (iii)
use improved linearized models of the UAV dynamics. Validated the trajectory design using
a team of three rovers [3] and a hardware-in-the-loop simulation of five UAVs [4, 5].

" Extended the cooperative path planning algorithm (RH-MILP) to 3D [6, 7]. Modified the
formulation to include models of the environment risk in the cost-to-go, glue, and detailed
paths. Developed a new pruning technique that significantly reduces the computation time
of the receding horizon algorithm. This approach is faster, but it still retains the freedom to
choose between multiple future paths and has been shown to work well in practice [8, 9, 10, 11].

" Developed a novel approach to the decentralized collision avoidance problem for multiple
UAVs using our new robust model predictive controller [3, 12]. This decentralized Model Pre-
dictive Controller (DMPC) algorithm guarantees robust satisfaction of coupling constraints
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and offers a significant computation improvement over a centralized approach. The key point
is that, while the vehicles are assumed to communicate, the solution process does not iterate,
so it scales well with the fleet size [13, 14].

" The task assignment algorithms have been extended to add robustness to uncertainty in the
situational awareness. The receding horizon task assignment (RHTA) has been extended
to solve problems with coupled reconnaissance and strike objectives [22, 15]. We have also
developed a new Filter-embedded Task Assignment (FETA) algorithm that gives a formal
method of reducing the impact of disturbances or uncertainty in the cost estimates in the
on-line task assignment [2, 16].

" Completed the design of the DURIP-funded multi-rover and multi-UAV testbeds and per-
formed initial flight tests of the path planning algorithms on the UAVs [4, 5, 9, 10, 11, 17].

Algorithm Details

With many vehicles, obstacles, and targets, the coordination of a fleet of Unmanned Aerial Vehicles
(UAVs) is a very complicated optimization problem, and the computation time typically increases
very rapidly with the problem size. Previous research proposed an approach to decompose this large
problem into task assignment and trajectory design problems, while capturing key features of the
coupling between them. This enabled the control architecture to solve an assignment problem first
to determine a sequence of waypoints for each vehicle to visit, and then concentrate on designing
paths to visit these pre-assigned waypoints. Refs. [2, 5] discusses the extension of that approach to

the Receding Horizon Task Assignment (RHTA) algorithm. RHTA was modified further so that it
can be executed in real-time when the situational awareness is changing rapidly. The calculation
was sped up by using Concert TechnologyTM by ILOG [18] to avoid the slow process of transferring
data between different parts of the solution algorithm and by using an incremental algorithm to
generate updates to the cost map as the knowledge of the environment changes.

Task Assignment Algorithms: Work on this project also investigated the role of uncertainty in
task assignment algorithms, leading to robust techniques that mitigate the effects on the command
and control decisions. This uncertainty could result from inherent sensing errors, incorrect prior
information, loss of communication with teammates, or adversarial deception. Our analysis showed
that there are very close similarities between the various robust optimization methods that have
recently been proposed (including techniques based on interval uncertainty models [19] and the
CVaR approach [20]), suggesting that comparable levels of robustness and performance could be
achieved using a very simple algorithm [21]. With this insight, we developed a new version of the
robust task assignment that is computationally tractable and yields levels of robustness that are
similar to the more sophisticated algorithms that are not suitable for real-time applications [15, 19].

RHTA was also extended to include reconnaissance tasks that can be added to a mission to reduce
the uncertainty in the environment. The optimal strike/reconnaissance mission, which explicitly
captures the coupling between performing reconnaissance tasks and reducing the uncertainty in the
associated strike tasks, is nonlinear, but with a change of variables we showed that it can be solved
as a MILP [15, 22].

We also developed a modified formulation of the task assignment that can be used to tailor the
control system to mitigate the effect of noise in the situational awareness (SA) on the solution [16].
The approach taken here is to perform the reassignments at the rate the information is updated,
which enables the planner to react immediately to any significant changes that occur in the envi-
ronment. Also, rather than just limiting the rate of change of the plan, this new approach embeds
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Fig. 1: Comparison of the plan correlation over time with and without filtering. The higher
correlation of the new algorithm shows that the plans change much less dramatically as a result of
changes in the information available to the planner.

a more sophisticated filtering operation in the task assignment algorithm. We have shown that
this modified formulation can be interpreted as a noise rejection algorithm that reduces the effect
of the high frequency noise on the planner. A key feature of this filter-embedded task assignment
algorithm is that the coefficients of the filter are tuned online using the past information. Fig. 1
shows that adding our filtering tends to increase the correlation between plans from one time-step
to the next, which decreases the variation in the plans. This means that the task assignment
is returning the same solution even though the data in the problem is changing slightly due to
noise/disturbances/uncertainty in the cost estimates. The unfiltered results show lower correla-
tion, which means the plans are changing and the vehicles would be re-assigned to new tasks (each
plan might be optimal at that time-step, but this can lead to a "churning" type of behavior wherein
the vehicles flip back and forth between assignments [23].)

We have also addressed the problem of weapon target assignment in a risky environment [24].
Two formulations were developed. The first is simple to solve, but the objective function ignores
the effect that the tasks performed by some of the weapons can have on the risk/performance of
the other weapons. The resulting targeting process is shown to be coordinated, but because it
ignores this interaction, it is what we call non-cooperative. The second formulation accounts for
this interaction and solves for the optimal cooperative strategy using Dynamic Programming. Two
approximation methods were investigated for these cooperative problems, and these are shown to
achieve near-optimal solutions with computation times that are suitable for on-line implementation.
The results from numerous simulations clearly show the benefits of cooperative strategies over just
coordinated ones [24].

MILP for Path Planning: References [6, 7, 8, 25] outline our path planning approach which uses
MILP to compute a short, detailed trajectory around obstacles, no-fly-zones, and other vehicles
using an estimate of the cost-to-go from a shortest path algorithm. The research in this project
extended this receding horizon approach (called RH-MILP) in several ways:

e Developed a new formulation of RH-MILP for 3D paths [7]. The approach is similar to our
previous 2D algorithms that construct a coarse cost map to provide approximate paths from a



sparse set of nodes to the goal and then use MILP optimization to design the detailed part of
the trajectory. The cost map calculation was modified to account for possible vertical vehicle
maneuvers [7].

" Embedded a new pruning algorithm in RH-MILP to significantly reduce the computation
time [6]. The approach is much faster, but it still retains the flexibility to choose better paths
around obstacles, and has been shown to work well in practice [4, 9, 11].

" Included environmental uncertainty/risk in the RH-MILP cost-to-go. Developed a new al-
gorithm for approximately solving robust shortest path problems (called ARSP) that yields
levels of performance that are comparable to previously published algorithms, but is signif-
icantly faster (only approximately 2.5 times the computational effort to solve the nominal
problem) [17].
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Fig. 3: Non-robust. Fig. 4: Robust.

Fig. 3 shows position time histories for 100 simulations of a double integrator system using nominal
MPC. The position constraint is shown dashed, the control was constrained to have unit magnitude
or less and a random disturbance of up to 20% of the control was included. Each o marks the end
of a simulation as the problem became infeasible. Fig. 4 shows the same results using robust MPC
with constraint tightening. Observe that the position goes right to the constraint but never crosses
it, remaining feasible throughout.

Decentralized MPG The same concept has been used to develop a decentralized MPC (DMPC)
algorithm for multiple subsystems with hard, coupled constraints. Multiple UAVs with collision
avoidance constraints form an example of this class of systems [13, 14]. The algorithm scales much
better than a centralized approach as each subsystem has an individual planning optimization solv-
ing only for its own actions. The actions of other subsystems are accounted for by communication,
but feasible solutions are guaranteed and it is not necessary to iterate between subsystems to check
feasibility. The subproblems are solved sequentially, and constraint tightening is employed to ensure
that each subproblem has at least one feasible solution, given a feasible solution to the preceding
subproblem.
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Fig. 5: Typical DMPC scenario. Fig. 6: DMPC Computation comparison

To demonstrate the improvement in scalability, DMPC was applied to a multi-UAV collision
avoidance problem - 50 random instances were done for each fleet size and compared with cen-
tralized robust MPC for the same problems. Fig. 5 shows a typical scenario. The median solution
times are shown in Fig. 6. Note the different scales on the upper and lower plots, and that the



decentralized solution times are broken down by subproblem but shown stacked, as they are solved
sequentially. For 5 vehicles, computation time was improved by a factor of 20 or more [14].

The DMPC algorithm was also extended to explic-
itly account for delays in the system, arising from
both the computation of each control optimization
and the communication between vehicles. The algo-
rithm was demonstrated in hardware, using wheeled
robot vehicles (Fig. 7) to emulate UAVs. MILP opti-
mization was used in real-time within the DMPC al-
gorithm to solve the nonconvex trajectory optimiza-
tions. Fig. 8 shows trajectories from experiments Fig. 7: Three rover experimental setup.
using three rovers. In the first figure, the target boxes are at the bottom right, and rover 1 must
change its path significantly to avoid collisions. The last two plots show a different scenario, in
which rovers 1 and 3 must swap positions and rover 2 crosses both their paths. In these cases, all the
rovers take indirect paths to avoid collisions. These experimental results confirmed that the modi-
fied algorithm can operate successfully in the presence of realistic computation and communication
delays.

-2

(a) (b) (c)

Fig. 8: DMPC Results for Three Rovers. Numbers mark the starting points of each rover and the
target regions are shown by boxes.

UAV Testbed Demonstrations

The UAV testbed shown in Fig. 9 was developed to validate and evaluate the coordination and
control approaches [5, 10]. This work was motivated by the observation that a key step towards
transitioning these high-level algorithms to future missions will be to successfully demonstrate that
they can handle similar challenges on scaled vehicles operating in realistic environments. A wireless
video system was integrated with the UAV testbed to produce high quality images from the airborne
vehicles. Fig. 10 shows a typical aerial shot from one of the UAVs. This system is used to track
stationary and moving objects on the ground and provide feedback to the operator. The status at
the end of the project was:

* UAV testbed has been operated autonomously on numerous (> 40) occasions [4]. Fig. 11
shows the results of a 22 min. autonomous flight involving two UAVs simultaneously flying
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Fig. 9: UAV testbed with 8 identical aircraft.
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Fig. 10: Image from onboard video. Fig. 11: Data from 2 UAVs on same plan. 50m
offset applied for easier viewing.

the same flight plan. Both vehicles tracked the waypoints in the presence of wind and open
loop formation flight was achieved by adjusting the commanded speed until the vehicles were
in phase with one another. A 50m vertical offset was applied to the data to allow for easier
viewing.

" Implemented RH-MILP on the UAVs [4, 10, 11]. The results were successful, but they high-
lighted the need to account for the effect of wind disturbances on the entire planning system.
This also requires that the plans be robust to flight time uncertainty and that the planner
can rapidly adapt to variations in the execution.

" Developed a flexible GUI for designing mission scenarios, which is a challenging problem when
there are many vehicles and targets and the environment is dynamic. The interface can be
used to layout the scenario prior to the mission. It can also be used during the mission to
provide the operator with a visualization of the current plan, enabling them to interact with

the optimization algorithms [17].

Personnel Supported

Professor Jonathan How; graduate students E. King and M. Alighanbari; and undergraduates

C. Wesley and C. Engel; and Staff Pete Young.

Transitions

There have been several key transitions of the technology as part of this program:



* Key interactions with Robert Miller at Northrop Grumman (Oct 2003-present).

"* Working with Jerry Wohletz, Kathleen Misovec, and Jorge Tierno at AlphaTech (now BAE)
from Jan 2004 - June 2005 on an STTR (phase-i).

"* Our MILP path planning algorithm were successfully demonstrated on the Boeing OCP
platform as part of the DARPA SEC program [27, 28].

"* Dr. A. Richards (former student) is now a Lecturer in Controls and Dynamics, Dept. of
Aerospace Engineering, University of Bristol
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